Universe— everything! All of the elements in all sets and everything surrounding them.

Both circles and everything else surrounding them!

Subset-- some pieces, but not all. Part of the universe.

This subset shows only C

This subset shows only A

Intersection -- elements that are common to two (or more) subsets. Also called "and."

This subset shows $P \cap Q \cap R$

This subset shows P ∩ Q

Written as the symbol \cap

Union-- the set of elements in subsets A or B or BOTH. Also called "or."

Written as the symbol U

This subset shows A U C

This subset shows A U B

Complement— the set of elements outside of a given subset. Also called "not."

Written as the symbols ~A or A'

Empty Set-- a set that has no elements-- nothing in common among sets. Also known as "mutually exclusive."

Written as the symbol:

Mix and Match!

Of course, all of these things can be mixed together:

How would you shade

(C U B) ∩ A

How would you shade

C ∩ ~(**A** ∪ **B**)

Set Notation

Record the following information:

Which elements are in set A?

Which elements are in set B?

Which elements are in sets A and B?

Set Notation-- a way to NOT use a Venn Diagram

Record the following information:

Which elements are in set A?

Which elements are in set B?

Which elements are in sets A and B?

{4, 5, 8}

Set Notation-- a little practice

What is:

Consider the following sets:

A: {blue, green, yellow, purple, pink}

B: {orange, black, red, brown}

C: {yellow, red, green, teal}

1) A U B? 2) C∩B?

3) $(A \cup B) \cap C$?

4) A∩B?